OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4721
Core Mathematics 1
Monday 23 MAY $2005 \quad$ Morning 1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

WARNING

You are not allowed to use a calculator in this paper.

1 Solve the inequality $x^{2}-6 x-40 \geqslant 0$.

2 (i) Express $3 x^{2}+12 x+7$ in the form $3(x+a)^{2}+b$.
(ii) Hence write down the equation of the line of symmetry of the curve $y=3 x^{2}+12 x+7$.

3 (i) Sketch the curve $y=x^{3}$.
(ii) Describe a transformation that transforms the curve $y=x^{3}$ to the curve $y=-x^{3}$.
(iii) The curve $y=x^{3}$ is translated by p units, parallel to the x-axis. State the equation of the curve after it has been transformed.

4 Solve the equation $x^{6}+26 x^{3}-27=0$.

5 (a) Simplify $2 x^{\frac{2}{3}} \times 3 x^{-1}$.
(b) Express $2^{40} \times 4^{30}$ in the form 2^{n}.
(c) Express $\frac{26}{4-\sqrt{ } 3}$ in the form $a+b \sqrt{ } 3$.

6 Given that $\mathrm{f}(x)=(x+1)^{2}(3 x-4)$,
(i) express $\mathrm{f}(x)$ in the form $a x^{3}+b x^{2}+c x+d$,
(ii) find $\mathrm{f}^{\prime}(x)$,
(iii) find $\mathrm{f}^{\prime \prime}(x)$.

7 (i) Calculate the discriminant of each of the following:
(a) $x^{2}+6 x+9$,
(b) $x^{2}-10 x+12$,
(c) $x^{2}-2 x+5$.
(ii)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

State with reasons which of the diagrams corresponds to the curve
(a) $y=x^{2}+6 x+9$,
(b) $y=x^{2}-10 x+12$,
(c) $y=x^{2}-2 x+5$.

8 (i) Describe completely the curve $x^{2}+y^{2}=25$.
(ii) Find the coordinates of the points of intersection of the curve $x^{2}+y^{2}=25$ and the line $2 x+y-5=0$.

9 (i) Find the gradient of the line l_{1} which has equation $4 x-3 y+5=0$.
(ii) Find an equation of the line l_{2}, which passes through the point $(1,2)$ and which is perpendicular to the line l_{1}, giving your answer in the form $a x+b y+c=0$.

The line l_{1} crosses the x-axis at P and the line l_{2} crosses the y-axis at Q.
(iii) Find the coordinates of the mid-point of $P Q$.
(iv) Calculate the length of $P Q$, giving your answer in the form $\frac{\sqrt{ } a}{b}$, where a and b are integers.

10 (i) Given that $y=\frac{1}{3} x^{3}-9 x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the coordinates of the stationary points on the curve $y=\frac{1}{3} x^{3}-9 x$.
(iii) Determine whether each stationary point is a maximum point or a minimum point.
(iv) Given that $24 x+3 y+2=0$ is the equation of the tangent to the curve at the point (p, q), find p and q.

